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We calculate the Josephson current in a diffusive superconductor/ferromagnet/superconductor junction,
where the ferromagnetic region contains multiple layers �or domains�. In particular, we study a configuration
where there are two layers with an arbitrary relative in-plane magnetization orientation and also include
nonideal interfaces and arbitrary spin-flip scattering. We study the 0-� oscillations of the critical current for
varying junction width d and find that the � state vanishes entirely when the magnetic misorientation angle of
the two layers exceeds a critical angle �c. While �c→� /2 in the limit of high temperatures, we find that �c

becomes smaller than � /2 at low temperatures compared to Tc. 0-� oscillations are also found when varying
the temperature or the misorientation angle for fixed values of d, and we present phase diagrams that show
qualitatively the conditions for the appearance of such oscillations. We also point out how one may obtain
significant enhancement of the critical current in such a system by switching the magnetization for selected
values of the junction width d, and comment on the necessary conditions for establishing a long-range triplet
Josephson effect.
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I. INTRODUCTION

The topic of superconductor-ferromagnet heterostructures
has been a subject of intense research for several years.1,2

Not only do such systems constitute model systems for in-
vestigating the interplay between two fundamental
condensed-matter phenomena, ferromagnetism �F� and su-
perconductivity �S�, but recent advances in fabrication tech-
niques of such hybrid structures make applications increas-
ingly attainable. Especially S/F based Josephson technology
holds great promise in nanoelectronics, e.g., as a physical
realization of the qubit of quantum computation.3 Another
possible device is in some sense analogous to a spin valve
exhibiting giant magnetoresistance �GMR�, i.e., strongly
suppressing the current for opposite orientation of the
magnetization4 in two F layers separated by a normal metal
�N�. For our object of interest however, superconducting
electrodes are used instead of ferromagnets and N is replaced
with F, in which case the resistance effect of magnetization
switching is known to be reversed compared to the spin
valve.5

The proximity effect between a superconductor and a nor-
mal metal was predicted decades ago6 and has since been
investigated thoroughly both theoretically and experimen-
tally. However, several new and interesting effects were pre-
dicted when the layer of normal metal was replaced with a
ferromagnet due to spin-triplet correlations in the ferromag-
net induced by the exchange field.1,2 Much attention has been
given to superconductor/ferromagnet/superconductor �SFS�
structures, which are studied as a somewhat more exotic
class of Josephson junctions. The most interesting emerging
phenomenon in SFS junctions is the appearance of the so-
called � state,7,8 in which the difference in the superconduct-
ing phase across the junction is � in the ground state, in
contrast to the conventional state with phase difference zero.
The physical result of transitions between these states is usu-
ally a sign change in the critical Josephson current Ic through
the junction, the observable manifestation of which being a

nonmonotonic dependence of Ic on parameters such as tem-
perature and junction width. Been predicted for decades, the
experimental verification of this phenomenon some years
ago9,10 was one of the catalysts of the present activity on the
field. Recently, the effect of magnetic impurities in SFS junc-
tions was also investigated theoretically.11,12

It is well known that in simple S/F structures, the prox-
imity effect will only induce opposite spin pairing �OSP�
triplet correlations �spin projection Sz=0�, and that equal
spin pairing �ESP� triplet correlations �Sz= �1� require inho-
mogeneous magnetization.1 ESP components are in some
contexts referred to as long-range triplet correlation �LRTC�
components and are of special interest because they do not
decay as rapidly in the ferromagnet as the other components,
and may therefore evade the suppression of the supercurrent
for increasing width of the ferromagnet. One way of achiev-
ing this in theory is to let the magnetization in the F layer
have a helical structure.13,14 A similar effect is also found by
considering a superconductor/insulator/superconductor �SIS�
junction where the S electrodes themselves exhibit a spiral
magnetic order coexisting with the superconductivity.15 Yet
another alternative is layered S/F structures16 with noncol-
linear magnetization or simply a SFS structure where F is
replaced with several ferromagnets with different direction
of magnetization.

Recent theoretical studies have been focusing on junc-
tions with two ferromagnets sandwiched between the super-
conducting electrodes. There are two physical realizations of
a system described by such a model. It may either describe a
device with two distinct, consecutively placed F layers �a
SF1F2S junction�, constructed to achieve customized nonho-
mogeneous magnetization. Several works5,17–22 have consid-
ered the Josephson current in such heterostructures. On the
other hand, the model may describe the more realistic experi-
mental situation of one ferromagnetic layer with several
magnetic domains. Some models of the latter kind have in-
cluded two or more in-plane magnetic domains,23,24 and al-
though this certainly is an interesting framework for under-
standing real heterostructures, the present paper considers the
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two layers placed consecutively as a SF1F2S structure. The
main motivation for this choice is that this configuration al-
lows for much easier experimental control of the magnetiza-
tion. The misorientation angle may be tuned by applying an
external weak magnetic field to the interface between the
ferromagnets if the magnetization axis is pinned in one layer
while in the other one there is an in-plane easy axis.18 To
accomplish this experimentally, one would probably need
some interlayer between the ferromagnetic films to avoid a
locking between the corresponding magnetizations due to the
interfilm exchange coupling.

Calculations on the models referred to here have predicted
0-� transitions upon varying the strength of the magnetic
exchange field, the junction width, or the temperature, de-
pending on the relative orientation of the magnetization in
the two F layers.5,17–22 For antiparallel magnetization, it is
reported that the 0-� oscillations will vanish, rendering the �
state impossible.25 An enhancement of the critical current for
the antiparallel orientation by increasing the exchange field
was first reported by Bergeret et al.5 and shortly after elabo-
rated upon by others.26,27 Much of the work has however
been limited to the case of collinear magnetization,25,27 but
recently also SF1F2S systems with arbitrary misorientation
angle for the magnetization have been analyzed.17,18,28 In
particular, Crouzy et al.28 have shown how the � state of
such a junction is suppressed for increasing misorientation
angles, vanishing at a critical angle �c=� /2 when the tem-
perature is close to the critical temperature, i.e., T /Tc�1.
One recent article29 has even studied a corresponding ferro-
magnetic trilayer structure, but focused chiefly on the LRTC
contribution to the Josephson current in such a structure. It
should be noted that while the majority of the work in this
field is carried out in the dirty limit, considering diffusive
F/S systems, several of the relevant papers17,18,29,30 study bal-
listic junctions as well.

Reference 28 points out the necessity of including addi-
tional effects to get a more accurate description of such sys-
tems. The present article may thus be viewed as an extension
of their work by studying a SF1F2S junction with noncol-
linear domains where nonideal interfaces and magnetic im-
purities are also taken into consideration. For the latter, we
will study the special cases where isotropic or uniaxial spin-
flip scattering is present. Consequently, there are three ques-
tions addressed in this work which were not treated in Ref.
28: �i� how does spin-flip scattering influence the 0-� oscil-
lations?; �ii� Do nonideal interfaces change the qualitative
behavior of the system?; and �iii� How does the Josephson
current for such a system depend on the temperature? The
possibility of investigating the latter point is present in our
model, as opposed to Ref. 28, which was restricted to tem-
peratures close to Tc. The reason for this is that the regime of
weak proximity effect is only attainable either if the S/F
transparency is low or when transparency is high under the
extra restriction that T�Tc, so that it is guaranteed that the
influence of superconductivity is weak in either case.

For concreteness, we consider a diffusive Josephson junc-
tion with two ferromagnetic layers with arbitrary in-plane
relative orientation of the magnetization, as shown in Fig. 1.
Although we focus on this picture of distinct, controllable
layers, the physically similar situation of magnetic domains

will also be commented upon. The superconducting elec-
trodes are two similar s-wave superconductors, and the inter-
faces between the superconductors and the ferromagnet are
assumed to have low transparency.

This paper is organized as follows: In Sec. II we will
briefly sketch the theoretical framework and go on to obtain
a solution for the proximity-induced anomalous Green’s
function in the ferromagnetic region of our SF1F2S system,
from which an expression for the Josephson current can be
calculated. In Sec. III we present the dependence of the Jo-
sephson current on the various parameters, analyze the re-
sulting 0-� oscillations in the junction, and construct a cor-
responding phase diagram. We discuss the applicability of
our findings in Sec. IV and furthermore present a discussion
of the absence of the long-range Josephson effect in such
SF1F2S systems. A summary and some final remarks are
given in Sec. V. We will use boldface notation for three vec-

tors, . . .ˆ for 4�4 matrices, and . . . for 2�2 matrices.

II. THEORETICAL FORMULATION

We address this problem by means of the Usadel equation
in the quasiclassical approximation. This corresponds to in-
tegrating out the dependence on the kinetic energy of the
Gor’kov Green’s function, obtaining thus the quasiclassical
Green’s function ĝ as the object used to describe our system.
This approximation is valid as long as all relevant energy
scales are much smaller than the Fermi energy �F, and cor-
respondingly that all relevant length scales are much larger
than the Fermi wavelength. The latter condition is reconciled
with the presence of sharp interfaces in our model by intro-
ducing appropriate boundary conditions, as discussed below.
The approach is based on the Keldysh formalism for non-
equilibrium superconductors, which is convenient to work in
also in the present limiting case of equilibrium. Here one
operates with 8�8 matrix Green’s functions, in which the
retarded Green’s function ĝR, the advanced Green’s function
ĝA, and the Keldysh Green’s function ĝK are 4�4 matrix
components. As both the advanced and the Keldysh compo-
nent of the matrix can easily be expressed by the retarded

x = d2x = −d1 x = 0

ĝS(+χ)ĝS(−χ) ĝF1
ĝF2

φ

ĥ1 ẑ

ŷ

x̂

ĥ2

FIG. 1. �Color online� The experimental setup proposed in this
paper. Two s-wave superconductors are separated by two ferromag-
netic layers with an arbitrary relative orientation of the magnetiza-
tions. The ferromagnetic regions may model a domain structure of a
single ferromagnetic layer or correspond directly to two distinctly
deposited magnetic layers. This is similar to the setup considered in
Ref. 28.
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component in our case, it will be implicitly assumed in the
following that the Green’s function under consideration is
the retarded component ĝR.

We will desist from further discussion of quasiclassical
theory and instead refer the reader to the considerable litera-
ture that covers the Keldysh formalism and nonequilibrium
Green’s functions.31–35 We go on to write up the matrix struc-
ture of our quasiclassical Green’s functions. In the bulk su-
perconductors, the Green’s function reads31

ĝS = � 1�c i�2se�i�

i�2se	i� − 1�c
� , �1�

where c�cosh�
�, s�sinh�
�, and 
�atanh��0 /��, with �0
denoting the amplitude of the superconducting gap. The dif-
ferent signs of the phase � above correspond to the left
�lower sign� and right �upper sign� superconducting banks,
respectively. When not being in proximity to a supercon-
ductor, the Green’s function for a bulk ferromagnet reads

ĝF,0 = �1� 0

0 − 1�
� . �2�

When being influenced by a superconductor, off-diagonal el-
ements are introduced to this Green’s function, and for weak

proximity effect it is changed to ĝF� ĝF,0+ f̂ . This perturba-
tion can be expressed as31

f̂ = � 0 f����
− �f��− ��	� 0

� , �3�

where the constituting anomalous Green’s function can be
written as a matrix in spin space on the form36

f� = � f↑ f t + fs

f t − fs f↓
� . �4�

Here, fs denotes the singlet component, f t the OSP triplet
component, and f↑ and f↓ the ESP triplet components, and it
is these anomalous Green’s function that the Usadel equation
is to be solved for.

In our calculations, we will account for the possibility of
both uniaxial and isotropic spin-flip scatterings by the pa-
rameter �xy and �z as follows:

Uniaxial spin-flip:�xy = 0, �z = 3,

Isotropic spin-flip:�xy = 1, �z = 1. �5�

The spin-relaxation time for spin-flip scattering will be de-
noted �sf and is to be considered as a phenomenological pa-
rameter in our approach.

In the ferromagnetic regions F1 and F2, the linearized
Usadel37 equations take the form

D�x
2�f t � fs� + 2i�� � h cos ���f t � fs�

−
1

2�sf
��zf t � 3fs� � h sin ��f↑ + f↓� = 0,

D�x
2f + �2i� −

�xy

2�sf
� f − 2h sin �fs = 0;  = ↑,↓ , �6�

with �=0 in F1. Equation �6� constitute a set of coupled,
second-order, linear differential equations. Although an ex-
plicit analytical solution may be obtained for 
fs , f t , f� by
solving Eq. �6� brute force for nonzero �, the resulting ex-
pressions are very large and cumbersome. We therefore pro-
ceed via an alternative but equivalent route. By a change of
spin basis to a quantization axis which is aligned to the ex-
change field in F2, one obtains the equations

D�x
2�f t� � fs� + 2i�� � h��f t� � fs� −

1

2�sf
��zf t� � 3fs� = 0,

D�x
2f� + �2i� −

�xy

2�sf
� f� = 0. �7�

The superscript � denotes the new spin basis and the s-wave
component transforms as a scalar under spin rotations fs�
= fs. The general analytical solution for these equations in the
case of isotropic spin-flip scattering was obtained in Ref. 38.
In the present case, we obtain

f t� = c1e−q−x + c2eq−x + c3eq+x + c4e−q+x,

fs =
i

8�sfh
�c1�+e−q−x + c2�+eq−x + c3�−eq+x + c4�−e−q+x� ,

f� = Aeikx + Be−ikx, �8�

where we have defined

q� = �− D�sf��p − 3 − �z + 8i�sf��/�2D�sf� ,

�� = 3 − �z � p, p = ��3 − �z�2 − 64�sf
2 h2,

k = ��2i� − �xy/�2�sf�	/D . �9�

Taking �z=�xy =1, the above expressions reduce to those of
Ref. 38. Once the 
fs� , f t� , f�� have been obtained, one may
transform them back to the original quantization axis ẑ. If
we write

f = �fs + f · ��i�2, �10�

one may from Eq. �4� identify the vector anomalous Green’s
function

f = �f↓ − f↑, − i�f↑ + f↓�, 2f t	/2. �11�

This is equivalent to the dk-vector formalism described in,
for instance, Ref. 36. For future use, we define f�= f t� fs.
Finally, the transformation to the new spin basis is �see also
Fig. 2�

�f��T = �1 0 0

0 cos � − sin �

0 sin � cos �
��f�T. �12�

In general, the linearization of the Usadel equation is a valid
approximation in the case of a weak proximity effect. This

JOSEPHSON CURRENT IN DIFFUSIVE MULTILAYER… PHYSICAL REVIEW B 78, 104509 �2008�

104509-3



may be obtained in two limiting cases: �i� the barriers have
low transparency or �ii� the transparency is perfect �ideal
interfaces� and the temperature in the superconducting reser-
voir is close to Tc, such that �0 is small. An analytical ap-
proach is permissible in both scenarios, with differing
boundary conditions. In case �i�, the standard Kupriyanov-
Lukichev �K-L� boundary conditions39 are usually employed
in the literature, while case �ii� implies continuity of the
Green’s function and its derivative. In an experimental situ-
ation, the barrier region can hardly be considered as fully
transparent, such that the K-L boundary conditions are more
realistic than continuity of the Green’s function and its de-
rivative. We will therefore employ the K-L boundary condi-
tions in this paper.40

To obtain the anomalous Green’s function, we must
supplement the general solution in Eq. �8� with the K-L
boundary conditions at three interfaces. At the S /Fi inter-
faces located at x=−d1 and x=d2, one obtains

2�d1ĝF1
�xĝF1

�x=−d1
= �ĝS�− ��, ĝF1

	�x=−d1
,

2�d2ĝF2
�xĝF2

�x=d2
= �ĝF2

, ĝS���	�x=d2
. �13�

We have defined the parameter

� =
RB

RF
, �14�

where RB is the resistance of the barrier region and RF is the
resistance of in the diffusive ferromagnetic regions �assumed
to be the same for both F1 and F2�. For the F1 /F2 interface,
which denotes the separation of the ferromagnetic layers, we

assume the resistance to be much smaller than at the S /Fi
interfaces. Therefore, we model this by continuity of the
Green’s function and its derivative

gF1
= gF2

�x=0, �xgF1
= �xgF2

�x=0. �15�

Let us comment briefly on the case where F1 and F2 are two
domains of a single layer. A domain-wall resistance may
quite generally be defined as Rw=R−R0, where R and R0 are
the electrical resistances with and without a domain wall
�i.e., homogeneous magnetization�, respectively. When the
width of the domain wall increases, Rw→0 and vanishes all
together when the width of the domain wall is much larger
than the Fermi wavelength.41 In the present paper, we con-
sider an abrupt change in magnetization at the interface of
the two domains, corresponding to a very thin domain wall,
such that one would in general expect a finite contribution to
the resistance of the junction. To reduce the number of pa-
rameters in the problem, however, we assume that this resis-
tance is much smaller than at the S/F interfaces and effec-
tively set it to zero. In the case where F1 and F2 are separate
ferromagnetic layers, one may neglect the resistance at the
interface between them by assuming a good electrical con-
tact achieved during deposition of the layers.

The 
f2� , f2� anomalous Green’s functions are related to
a set of anomalous Green’s functions in a rotated basis

f2�� , f2� � via

f2↑ =
1

2
�cos ��f2↓� + f2↑� � + 2i sin �f2,t� + f2↑� − f2↓� 	 ,

f2↓ =
1

2
�cos ��f2↓� + f2↑� � + 2i sin �f2,t� − f2↑� + f2↓� 	 ,

f2,t = cos �f2,t� +
i sin �

2
�f2↓� + f2↑� � , �16�

where 
f2�� , f2� � have the general form as shown in Eq. �8�.
The complete anomalous Green’s functions in the regions F1
may be written as

f1� = b1e−q−xL+
��0� + b2eq−xL+

��0� + b3eq+xL−
��0�

+ b4e−q+xL−
��0� ,

f1 = Aeikx + Be−ikx, �17�

while in F2 one finds

f2� = c1e−q−xL+
���� + c2eq−xL+

���� + c3eq+xL−
���� + c4e−q+xL−

���� +
i sin �

2
��C↑ + C↓�eikx + �D↑ + D↓�e−ikx	 ,

f2 =
1

2
�eikx
cos ��C↑ + C↓� + �C↑ − C↓�� + e−ikx
cos ��D↑ + D↓� + �D↑ − D↓�� + 2i sin ��c1e−q−x + c2eq−x + c3eq+x + c4e−q+x�	 .

�18�

ẑ

x̂ ŷ

φf

f �

h

FIG. 2. �Color online� The change of spin basis from a quanti-
zation axis ẑ to a quantization axis h.
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Above, we have defined L�
�����=cos ���i�� / �8�sfh�. Note

that Eq. �18� reduces to exactly the same form as Eq. �17� for
�=0 �parallel magnetization�, as demanded by consistency.
The remaining task is to determine the 16 unknown coeffi-
cients 
bi� , 
ci� , 
A ,B ,C ,D�. For clarity, we write out the
boundary conditions explicitly. At x=−d1, one has �
= ↑ ,↓�,

�d1�xf1� = cf1� 	 se−i�, �d1�xf1 = cf1, �19�

while at x=d2 we find

�d2�xf2� = � sei� − cf2�, �d2�xf2 = − cf2. �20�

Finally, at x=0 one obtains

f1� = f2�, �xf1� = �xf2�,

f1 = f2, �xf1 = �xf2. �21�

Inserting Eqs. �17� and �18� into Eqs. �19�–�21� yields a set
of linear equations which may be represented by a 16�16
matrix, and the solution for the 16 coefficients is found nu-
merically. Once the anomalous Green’s functions have been
obtained, one may calculate physical quantities of interest. In
the present paper, we will be concerned with the Josephson
current

j�x� = − �NFeDx̂/4�� d� Tr
�̂3�ĝR�xĝ
K − ĝK�xĝ

A��

= − �NFeDx̂/2��
−�

�

d� Re
M+���

+ M−���M↑��� + M↓���� � tanh���/2� , �22�

with the definitions �= ↑ ,↓�,

M��� = �f�− ��	��xf��� − f����x�f�− ��	�,

M���� = �f��− ��	��xf	��� − f�����x�f	�− ��	�. �23�

The matrix �̂3 in the first line of Eq. �22� is defined by �̂3
=diag�1,1 ,−1 ,−1�. The normalized current is defined as

I���/I0 = 4�j�x,���/�NFeD�0
2� , �24�

which is independent of x for x� �−d1 ,d2	 �due to conserva-
tion of electrical current�. The maximal supercurrent the sys-
tem can support, known as the critical current, is given by
Ic= I� �

4 � in the case of a sinusoidal current-phase relation.
Before proceeding to disseminate our results, we briefly

remind the reader �see, e.g., Refs. 2 and 42� of the qualitative
physics that distinguishes S/F proximity structures from S/N
systems, and thus gives rise to, e.g., 0-� oscillations of the
critical current �which will be discussed in detail for our
system in Sec. III�. The fundamental difference between the
proximity effect in a S/N structure as compared to a S/F
structure is that the Cooper pair wave function acquires a
finite center-of-mass momentum in the latter case due to the
Zeeman-energy splitting between the ↑ and ↓ spins constitut-
ing the Cooper pair. The finite center-of-mass momentum of
the Cooper pair implies that the condensate wave function in
the ferromagnetic region displays oscillations in space, per-

mitting it to change sign upon penetrating deeper into the
ferromagnetic region. Quite generally, one may write that the
Cooper pair wave function �order parameter� as �=�0e−ksx

in a S/N structure while �=�0 cos�kf ,1x�e−kf ,2x in a S/F
structure, where 
ks ,kf ,1 ,kf ,2� are wave vectors related to the
decay and oscillation lengths of the proximity-induced con-
densate in the nonsuperconducting region.

The fact that the proximity-induced superconducting or-
der parameter oscillates in the ferromagnetic region suggests
that the energetically most favorable �ground-state� phase
difference between the superconducting reservoirs might not
always be zero, as in an S/N/S junction. For a very thin
ferromagnetic layer, � does not change much and there is no
reason for why there should be an abrupt discontinuity in the
phase at one of the F/S interfaces—hence, the system is in
the 0 state. If the thickness of the ferromagnetic layer is
comparable to the oscillation length of � ��1 /kf ,1 in our
notation above�, then � may cross zero in the middle of the
ferromagnetic region and display antisymmetric behavior.
This is accompanied with a shift of sign of the order param-
eter in the, say, right bulk superconductor as compared to the
left bulk superconductor. Under such circumstances, the en-
ergetically most favorable configuration corresponds to a
phase difference of � between the superconductors, since
�=�0 in one of the superconductors and �=−�0=�0ei� in
the other superconductor.

This is related to 0-� oscillations of the critical current as
follows. The energy of the Josephson junction may in the
tunneling limit be well approximated by

�J � IJ,0�1 − cos 2�� , �25�

where I0 contains the magnitude and sign of the critical cur-
rent while 2� is the phase difference between the supercon-
ductors. Now, IJ,0 is closely related to the proximity-induced
condensate wave function � in the ferromagnetic region and
may change sign depending on, for instance, the width of the
ferromagnetic layer. Depending on its sign, the ground-state
configuration corresponds to either 2�=0 or 2�=�, and the
critical current supported by the system will change sign
depending on which of these phases the system is in �al-
though the critical current itself is given by 2�=� /2�.

III. RESULTS

Unless otherwise stated, we will fix h /�0=10 and �=5 to
model a realistic experimental setup with weak ferromagnets
�the exchange field was estimated to 5–10 meV in Ref. 43.�
The particular choice of � is motivated by the fact that we
expect the resistance of the barrier region to exceed the bulk
resistance of the ferromagnets, and in addition to a low trans-
parency of the S/F interfaces this clearly suggests that �
�1. This will ensure a weak proximity effect, as explained
in Sec. II. In order to reduce the number of free parameters
further, we in general set the widths of region F1 and F2 to be
equal d1=d2�d. The superconducting coherence length �

=�D /�0 will be used as the unit in which the widths are
measured. Where spin-flip scattering is included, we will use
the parameter g=1 / ��sf�0� as a measure of the strength of
this effect.
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We have numerically confirmed that the system follows a
sinusoidal current-phase relation regardless of the direction
of magnetization and all other variable parameters of our
system. This allows us to focus on the state that supports the
critical current, namely, �=� /4. A sinusoidal current-phase
relation is moreover what should be expected for such sys-
tems with weak proximity effect44 and where the bulk super-
conductors have the same symmetry.45 We have also con-
firmed that the assumption of weak proximity effects holds
by assuring that the value of the anomalous Green’s function
always obey �fs,t,��1 for the parameter range we consider.
To make the computation of the solutions to the Usadel equa-
tion numerically stable, we furthermore add a small imagi-
nary term i� to the excitation energy �, where the value �
=10−3 has been used. This can be motivated as a way to
account for inelastic-scattering processes,46 interpreting the
term as the inverse �positive� quasiparticle lifetime.

A. Zero temperature

First, we will consider the case where the temperature is
fixed to zero unless otherwise stated, i.e., the calculations are
made with T /Tc=0.001. The critical current as a function of
the junction width d is shown in Fig. 3 for uniaxial spin-flip
scattering. Considering first the parallel case �=0, the well-
known 0-� oscillations are reproduced, where the current
change sign for certain values of d. It should however be
noted that we have chosen to always plot the critical current
as a positive quantity, as defined by Eq. �24�, because this is
what is most commonly measured in experiments.2,9 We
have confirmed that the oscillations are almost exactly peri-
odic for the parameter range considered here. Increasing the
effect of spin-flip scattering tends to move the transition
points between the 0 state and the � state toward higher
values of d. Throughout our investigations, we find no sig-
nificant difference between isotropic and uniaxial spin-flip
scatterings for the width dependence of the critical current.
Thus, we consider only uniaxial spin-flip scattering when-
ever the role of magnetic impurities is studied.

The subplots of Fig. 3 show how increasing the relative
angle of magnetization to �=� /4 shifts the first transition
points to the right and the second to the left, reducing the
width region in which the system is in the � state. For �
=� /2, the oscillations have ceased entirely, leaving the junc-
tion in the 0 state for all values of d. These effects are shown
more clearly in Fig. 4, which also shows that the oscillations
do not return for �� �� /2,�	. This can be expressed as a
critical misorientation angle �c�� /2 over which the � state
is not realizable, which is in agreement with the findings of
Ref. 28. Reference 28 claims that �c�� /2 independent of
parameters as long as the system is near the critical tempera-
ture T /Tc�1. We find �c to have a somewhat lower value
�c�0.46��� /2 in the present case of T /Tc�1, but we
will show in Sec. III B how this value approaches � /2 for
increasing temperatures and how it changes for other values
of the exchange field than our particular choice of h /�0
=10. In light of the discussion concerning the qualitative
physics involved in a S/F/S proximity structure, it seems
reasonable to suggest that the vanishing of the 0-� transi-

tions are directly linked to a strong modification of the
Cooper-pair wave-function oscillation length inside the fer-
romagnet, which renders the � state inaccessible. Possible
explanations will be discussed further in Sec. IV.

As stated in the introduction, several works have con-
trasted the cases of parallel and antiparallel orientations,
while the intermediate angles have not been studied thor-
oughly �see, however, Refs. 18 and 28�. We seek to remedy
this by first presenting in Fig. 5 the dependence of the critical
current on the misorientation angle. The three junction
widths d /�= 
1.0,1.25,1.5� are chosen somewhat arbitrarily
from the available range of values, but illustrate adequately
the conditions for appearance of 0-� oscillations. First, we
confirm the obvious fact that the critical current should be
symmetric with respect to �=�. Therefore we will from now
on only consider the interval �� �0,�	, the maximum of the
misorientation angle being the antiparallel orientation. Next,
we see that no 0-� oscillations appear upon varying the mis-
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FIG. 3. �Color online� Plot of the width dependence of the criti-
cal current for several values of the spin-flip scattering rate, which
is here taken to be uniaxial in spin space. We have defined the
dimensionless parameter g=1 / ��sf�0� as a measure of the spin-flip
scattering rate. At d /�=1.0, the system is in the 0 state.
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orientation angle for d /�=1.0 fixed, which agrees with the
observation from the previous figures that the junction ap-
pears to be in the 0 state for all angles at this junction width.
For d /�= 
1.25,1.5� however, the junction starts out in the �
state for the parallel orientation, and we can see that a tran-
sition takes place to the 0 state for some angle ��� /2. This
is in agreement with the result of Ref. 18 that a nonmono-
tonic dependence of the critical current on � occurs when the
� state is the equilibrium state of the junction for �=0, and
a similar statement was also made in Ref. 17.

A small effect of spin-flip scattering which may be men-
tioned here is that for ��0 it may give the appearance of an
effectively lowered misorientation angle with regard to the
shift in the d values for 0-� crossover. As a result, for angles
just above the critical angle, an increase of g may trigger the
transition from complete absence of the � state to 0-� oscil-
lations.

The evolution of the critical current for variable d and �
described in the previous paragraphs can be condensed to the
phase diagram shown in Fig. 6. If only the sign of the Jo-
sephson current is of interest, each of the plots of Ic�d� may
be thought of as a horizontal sweep through the phase dia-
gram for some fixed �, while every plot of Ic��� is repre-
sented by a vertical sweep for some fixed d. As seen, the �
state becomes impossible above a critical angle �c for the
present case of T→0. We will contrast this with the finite-
temperature case in Sec. III B.

B. Finite temperature

We proceed by considering the dependence of the Joseph-
son current on the temperature. The superconducting elec-
trodes were assumed to be conventional superconductors un-
affected by the ferromagnetic layers, so the standard BCS
temperature dependence of the superconducting gap will be
employed

��T� = �0 tanh�1.74�Tc/T − 1� . �26�

To illustrate how the critical angle �c for 0-� oscillations
depends upon increasing the temperature, including also the
dependence on the exchange field, we plot in Fig. 7 the criti-

cal angle as a function of the exchange splitting h for several
values of T. As seen, �c remains less than � /2 up to h /�0
�100 in the T→0 limit. However, increasing the tempera-
ture only slightly to T /Tc=0.2, we see that �c rapidly ap-
proaches � /2. The trend is the same upon increasing the
temperature even further, indicating the limit of �c=� /2 for
arbitrarily high values of h as T�Tc. We conclude therefore
that the critical angle above which 0-� oscillations cease to
exist is equal to � /2 as long as the temperature is high
�T /Tc�1�. However, for low temperatures and weak ex-
change fields, we find that �c deviates noticeably from � /2.

Also by varying the temperature parameter 0-� oscilla-
tions may be found in the system, as shown in Fig. 8. This
follows as a natural result if the critical values of junction
width at which 0-� transitions were found in Sec. III A are
temperature dependent. One difference from the plots of Ic as
a function of d is the existence of no more than one transition
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FIG. 4. �Color online� Plot of the width dependence of the criti-
cal current for several values of the misorientation angle �, with
spin-flip scattering turned off for simplicity �g=0�.
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point �for each value of g� before the Josephson current nec-
essarily vanishes at T=Tc. For increasing �, this transition
point moves leftwards until vanishing at T=0 at some critical
angle. By considering the dependence on misorientation
angle more carefully, we found that this critical angle, over
which the 0-� oscillations disappear for Ic as a function of T,
differs from the corresponding critical angle for Ic as a func-
tion of d. This may be explained by going back to the phase
diagram in Fig. 6 and noticing that �for T /Tc�0� the maxi-
mum � for the � phase region corresponds to a junction
width d /��1.35 �up to periodicity�. For any other junction
width, e.g., d /�=1.25 as used in the figures, the � state will
be unrealizable at T=0 for even lower values of �. This
results in the inequality that �c for thermally induced oscil-
lations is always less than or equal to �c for width-induced
oscillations.

Another point on which the thermally induced 0-� oscil-
lations differ from those obtained by varying the junction
width or the misorientation angle is the remarkably stronger
dependence on the spin-flip scattering rate. Increasing g
shifts the transition point significantly to the left and further-
more strongly influence the ratios Ic�g�0� / Ic�0�. Similar
findings were reported in Ref. 47.

So far, we have not considered the dependence of the
critical current on the misorientation angle while simulta-
neously going away from the limiting case of T=0. In prin-
ciple the phase diagrams presented might readily be general-

ized to a three-dimensional d-�-T phase diagram, but we
justify the omittance of this by arguing that the phase dia-
gram of the system does not contain many interesting new
features not already contained in the two-dimensional projec-
tion presented here. However, as is clearly visible in the
phase diagram for T /Tc=0.5 as shown in Fig. 9, the critical
angle is exactly �c=� /2, in full agreement with the analysis
done in Ref. 28. Another development as T increases is the �
region obtaining a more symmetric shape, also this in agree-
ment with Ref. 28.

C. Enhancement effect

As was seen in Fig. 5, there is a significant difference
between the current in the parallel configuration �=0 and the
antiparallel �=�. The ratio between these two critical cur-
rents Ic��=�� / Ic��=0� is plotted as a function of the junc-
tion width in Fig. 10. The fact that one always observes 0-�
oscillations for varying d in the parallel case, but never in the
antiparallel, leads to a divergence of the ratio at certain val-
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FIG. 6. Phase diagram of the Josephson junction for zero tem-
perature, showing the regions occupied by the 0 state and the �
state in width-misorientation parameter space. For the region given
by �� �� /2,3� /2	, the � state is completely absent. We have set
the spin-flip scattering strength to zero g=0.

0 20 40 60 80 100
0.44

0.45

0.46

0.47

0.48

0.49

0.5

h/∆0

φ
c
/
π

T/Tc = 0

T/Tc = 0.1

T/Tc = 0.2

T/Tc = 0.5

FIG. 7. �Color online� Plot of the critical angle �c at which the
0-� oscillations disappear, as a function of the exchange splitting h,
for a number of temperatures. Spin-flip scattering is neglected for
simplicity g=0.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

−6

T/Tc

I c
/
I 0

g = 0
g = 1
g = 2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

−6

T/Tc

I c
/
I 0

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−6

T/Tc

I c
/
I 0

φ = 0

φ = π/4

φ = π/2

FIG. 8. �Color online� Plot of the temperature dependence of the
critical current for several values of the spin-flip scattering rate,
which is here taken to be uniaxial in spin space. The junction width
is given by the value d /�=1.25.

SPERSTAD, LINDER, AND SUDBØ PHYSICAL REVIEW B 78, 104509 �2008�

104509-8



ues of the junction width, since Ic�0� drops to zero at this
transition point while Ic��� remains finite for all values of d.
We note also that one will always have Ic���� Ic�0�, but the
critical current is a monotonously increasing function of �
up to �=� only in the case that the system is in the 0 state
for �=0.

This enhancement of the Josephson current by switching
the direction of magnetization may possibly be utilized in a
device for controlling the magnitude of the current, if the
junction is tuned to the vicinity of a transition point. A simi-
lar effect was mentioned by Golubov et al.26 who considered
the exchange field h as the variable parameter, but to our
knowledge it has not yet been pointed out how this effect
may be applied by tuning the junction width or the tempera-
ture.

IV. DISCUSSION

Above, we have neglected the spatial depletion of the
superconducting order parameter near the S/F interfaces.
This approximation is expected to be excellent in the case of

a low-transparency interface.48 Moreover, it is well known
that a magnetic-flux threading in a Josephson junction in
general gives rise to a Fraunhofer modulation of the current
as a function of the flux.49 We here neglect this modification
by assuming that the flux constituted by the ferromagnetic
region is sufficiently weak compared to the elementary flux
quantum. This is the case for either a small enough surface
area or weak enough magnetization, but neither of these pre-
clude the possibility of having an appreciable energy ex-
change splitting between the majority and minority-spin
bands.

In the limit of antiparallel orientation, the � state will
become disallowed because the effect of the ferromagnetic
layers cancels, effectively giving a S/N/S junction. However,
remembering the symmetry requirements around �=� and
the possibility that also partial cancellation is sufficient to
render the sign change in IJ,0 impossible, we realize that 0-�
oscillations may vanish for two intermediate angles �
= ��c with 0��c��. The partial cancellation of the ex-
change fields commences at ��� /2, which may provide a
clue as to why the critical angle is always in the vicinity of
�=� /2 as seen in Fig. 7. Note that although the 0-� oscil-
lations vanish above the critical angle �c, it is evident from,
e.g., Fig. 3 that the critical current does not decay monoto-
nously even for ���c as it would have in an S/N/S junc-
tion.

One interesting observation in our study is that although
the critical angle varies, we never find �c�� /2. This means
that any choice of parameters that brings us away from the
limit considered in Ref. 28 seems to lower �c but never
increase it. A conjecture which may shed some more light on
this phenomenon is that the magnetization component of the
F2 layer perpendicular to the magnetization of the F1 layer
can be viewed as an additional effective spin-flip scattering
effect. It is known38 that sufficiently strong spin-flip scatter-
ing may remove the oscillations in the anomalous Green’s
function entirely, thereby inhibiting 0-� oscillations. This ef-
fect will be at its strongest for �→� /2, which may account
for the somewhat surprising fact that �c always remains
close to �=� /2. Combined with the effective cancellation of
the magnetization described in the previous paragraph, this
also serves as a possible explanation why the � state is for-
bidden for the orientations � /2����. To gain further un-
derstanding of the phase diagram of multilayer SFS junc-
tions, we suggest to extend the study to a trilayer model
similar as that studied in Ref. 29, but where the three layers
have equal thicknesses. If one fixes the middle layer and
varies the orientation of the leftmost and rightmost layers,
the possible existence and value of a critical misorientation
angle would give some hints to the origin of this phenom-
enon also in our bilayer system.

Finally, we would like to present a decomposition of the
current to serve as the basis for a discussion on the long-
range contributions to the Josephson current. It can be shown
easily from the formula for the Josephson current in Eq. �22�
that one may rewrite M++M−=Mt−Ms, where Ms and Mt
are expressed exclusively by the components fs and f t of the
Green’s function, respectively. It can furthermore be shown
that for the ESP components one gets M↑=M↓�M. One
may in this manner decompose the current as
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T /Tc=0.5 showing the occupation of the 0 state and the � state in
width-misorientation parameter space in a similar manner as Fig. 6
does for zero temperature. For the region given by �
� �� /2,3� /2	, the � state is completely absent. We have here set
the spin-flip scattering strength to zero g=0.
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Ic/I0 = �Ic,s + Ic,t + Ic,�/I0

= �
−�

�

d� Re
�− Ms���	 + �Mt���	

+ �2M���	� � tanh���/2� . �27�

While the total current is easily shown in our framework to
be constant throughout the junction, the separate components
given above need not be, and the spatial dependence of each
contribution is plotted in Fig. 11 for selected parameter val-
ues. For parallel orientation, one naturally finds that the ESP
correlations do not contribute to the current at all. For �
=� /2, where the ESP contribution is naively expected to be
at its maximum, we find that the OSP triplet contribution
however, is exactly zero throughout F2. That Mt and 2M

seem to change roles at x=0 can be explained in a natural
way by remembering that ultimately, the quantization axis
was taken to be ẑ for all x. For a quantization axis ŷ,
however, the components considered as ESP in the former
case would here correspond to OSP components, having spin
projection Sy =0.

The above argument may be used to clarify a point re-
garding the contribution to the current from LRTC. Refer-
ence 29 claims that a long-range component of the critical
current does not appear in a SF1F2S structure even with non-

collinear magnetizations, which seems at odds with our ob-
servation in Fig. 11 of a nonzero ESP component to the
current in F2. It is however important to maintain the distinc-
tion between the ESP contribution to the current and a LRTC
contribution. As explained in the case of �=� /2, the total
triplet contribution is equal for the two magnetic layers, but
appears as an ESP component in F2 only because of the
choice of quantization axis. Therefore, the ESP contribution
in F2 is equivalent to the OSP contribution in F1 and thus
cannot be regarded as a true long-range component. A long-
range Josephson effect is defined by the absence of the ex-
change field in the exponent for the relevant Green’s func-
tions, making its decay length in a ferromagnet comparable
to that of a normal metal. Inspecting Eqs. �18� and �9�, we
see that this certainly is not the case for �=� /2.

The discussion concerning the different contributions to
the Josephson current may also hold an important clue con-
cerning the 0-� oscillations. When inspecting the symmetry
components separately, we observed that there can be 0-�
oscillations of both the singlet and the triplet components
simultaneously. If this is generally the case, one idea is to
investigate for which parameters these two contributions act
constructively and for which they act destructively. In this
way the relative interplay of the different symmetry compo-
nents of Ic may offer an explanation of the behavior of the
critical angle �c for which the 0-� oscillations of the total
critical current disappear.

V. SUMMARY

In conclusion, we have investigated the 0-� oscillations
of the critical current in a diffusive SF1F2S Josephson junc-
tion with noncollinear magnetization, where the effects of
noncollinearity and spin-flip scattering have been studied in
particular. The introduction of spin-flip scattering does not
change the Josephson current dramatically, so the phase dia-
grams presented above for zero spin-flip scattering would
therefore not be qualitatively changed much by setting g
�0. Also, comparing isotropic and uniaxial spin-flip scatter-
ings, we found that the effect of these was very similar both
qualitatively and quantitatively.

Oscillations of the critical current for varying junction
width disappear when the relative angle of magnetization
passes a critical value �c, making the � state unattainable
regardless of choice of the other parameters. This critical
angle equals � /2 in the limit of relatively high temperatures
�T /Tc�1�, but is lowered below � /2 when the temperature
is low and the exchange field is small simultaneously. These
dependencies on the various parameters can rather easily be
read out of phase diagrams of the kind we have presented. A
straightforward analytical approach to the behavior of the
critical angle is challenging due to the many variables in our
system, but we have discussed several ways by which its
origin can be better understood.

With regard to the effect of finite interface transparencies,
we have not found any signs throughout our investigations
implying that the results of Ref. 28 change in any significant
way. Our mapping of the relevant parameter regimes does
however serve as a starting point for looking for new inter-
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esting effects that may appear upon varying the parameters
kept fixed in our case, i.e., the transparency � and the ex-
change field h in particular. A natural course for a continua-
tion of this work would be expanding the system from a
bilayer ferromagnet to a trilayer, similar to the Josephson
junction considered in Ref. 29, where the relevant parameter
regime for a significant LRTC contribution to the Josephson
current was found. It might be interesting to see how LRTC
manifests in our framework of symmetry components to

Ic and to investigate for what region in parameter space the �
state can be realized in such a system.
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